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Abstract 

Different methods for feedback designs are compared. 

These includes classical Proportional Integral Derivative 

(P. I. D.), state variable based methods like pole 

placement, Linear Quadratic Regulator (L. Q. R.), 

H-infinity and p-analysis. These methods are then 

applied for the design and analysis of the RHIC phase and 
radial loop, yielding a performance, stability and 

robustness comparison. 

1 INTRODUCTION 

In the last two decades, new developments in control 
theory have been made, particularly in the field of state 

space based techniques like H 2 or H m . The RHIC phase 

and radial loop have been designed using an H2 

approach (L. Q. R.), the state variables being beam phase, 
radius and the integral of the radius error. Studies, based 

on an H, approach, have been performed for a new 

design approach for those loops. 

2 DESCRIPTION OF THE SYSTEM 

The main variables used to describe the system are [ 11: 
cp the instantaneous phase deviation of the bunch from the 
synchronous phase, FR the variations of the beam radius 

and 8oJ.f the RF frequency deviation, b a scaling factor). 

The cavity transfer function is assumed to be the identity 
These variables are related by the two following transfer 

functions (Fig. 1) [l]: 

andBa=-&: 

Figure 1: Block diagram 

The system represented in Fig. 1 can be described using 

I, 

x, =x2 =cp 

two state variables: x _ 5 _ 1 
2 b s2 +a$ 

Se&f 

A third one, x3 = 
I 

(R - R s,eer)dt , is introduced to force 

the radius to follow its reference R,,,,, . These state 

variables, which are all observed, lead to the state space 

representation: 

3 Hm AND MIXED SENSITIVITY 

APPROACH 

3.1 Sensitivity Functions and Loop Shaping 

If we consider the following block diagram [2] where 
K(s) is a feedback controller and G(s) the transfer matrix 
of the system. 

K(s) &x ’ b 

-t 

T 

Figure 2: Sensitivity Function diagram 

the transfer matrices relating the reference to the error E 

and to the output y are respectively 

S(S) = (I+ G(s)K(s))-’ and 

T(s) = (I + G(s)K(s))-‘G(s)K(s) = I -S(s) 

S(s) and T(s) are known respectively as the sensitivity 
function and the complementary sensitivity function. 
From that diagram, one can see that 
- a good reference tracking and a good rejection of the 

perturbation pert are obtained when S and SG are 
small 

- the command effort is small when KS is small 
- a good noise rejection is obtained when T is small 

The gain of a transfer matrix, at a given frequency 0, will 

be characterized by its upper 0 and lower _o singular 

values. 
A transfer matrix G will be characterised by its H, norm 

defined as its biggest singular value: 
- 

llGllrn := sup o(G(_@)). 
0 

To design a feedback matrix K that matches the 
performance and robustness criteria, one will try to 
minimize S at low frequency (S behaves like the identity 
at high frequencies), and T at high frequency (T behaves 
like the identity at low frequencies), by choosing two 
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weight matrices W, and W3 that correspond to the shape 

. of S and T or the open loop KL. 

&(jo))< IW;’ ( jo)l and o(T(jti))l IW;’ (jo)l . These 

two requirements are combined into a single infinity norm 

specification of the form TY,,, 
II II 

I 1 where by definition 
m 

leading to the augmented plant: 
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-. 

Yla 

t-b1 W,(s) j+ 
-j 

j Ylb 

W,(s) -F 

Figure 3: Augmented plant 

3.2 Case of the phase and radial loop 

W,-’ was chosen to be: 

s* +2.103s+1.4106 
0 0 

sz +1.9103s+10h 

0 
IO’s +81O’s+l IO’ 

s2+2.3103s+3106 
0 

0 0 
10~s2+810~s+1108 

s2 +2.3103s+3106 \ 
and 

ws-’ : ! 8/(s+lOO) 0 0 30106 0 0 Is2 102(s+9.3103)/s2 0 0 1 

The system having a resonance at o, , a bilinear 

transform has been performed to avoid a pole zero 
cancellation. A circle, which should contain the open loop 
poles, is defined [3]. The following results have been 

obtained: 

Figure 5: Closed loop system 

K,(s), K,, K, are the three feedback transfer functions: 
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Figure 6: Controller Bode plot- 

3.3 Robustness and p analysis 

One advantage of the previous approach is the ability to 
take into consideration the uncertainties on parameters or 
neglected dynamics. In the case of the phase and radial 
loop, the synchrotron frequency varies during 

acceleration: 

represented as 

w, =G$ 

( 

1 

follows: 

+%6 
w, I U 

Y 

which can be 
I I 

f&w0 j 
1 0 -&=b 8 
L----I 

Figure 7: 0, representation 

The phase radial system, with no integral action, can now 
be represented as follows: 

Y 

Figure 8: System representation 

With A={[: oJS,~R,S, Es} and K the 

H, controller, one gets the generic M-A block diagram: 

Figure 4: Step response and open loop Bode plot 

The system settles in 10 ms. The phase and gain margins 
are respectively: 38 degrees and 9 dB. 

The closed loop system is now: 
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Figure 9: M A bloc diagram 

The robustness is a measure of the size of the perturbation 

A that will make the system unstable. It requires the 

structured singular value l.t of M with respect to the 

uncertainty A. The stability margin is defined as 
1 

max p, (M (jo)) where 
6J 

PA CM I= min(c(Q: de;(l _ MA = o). The fo*lowing fJ 

plot was obtained, where max(p)=0.9 or 6,, = 1.11 

Figure 10: p plot (pas a function of o in radis) 

4 LQR APPROACH Figure 13: Closed loop system 

Using the state variable representation defined in Eq 1, 
we can determine a Linear Quadratic Regulator (LQR), 
with the following quadratic performance 

6. CONCLUSION 

The H, approach allows us to design a controller, by 

either shaping the open loop response or by defining a 
certain set of uncertainties and perturbations. Its 
realization will require the synthesis of three transfer 
functions. A robust analysis is then easy to perform. 
The LQR approach will lead to a very simple realization: 
three gains and good stability margins. If the system is 

well known, it can lead to the programming of the 
feedback gains by switching to pole placement [4]. 
The traditional approach allows the decoupling between 
the phase and radial loop but the design of the controllers 
is more empirical. 

+qfTRor, )1 r , X being the state 

vector, Q minimising the deviation in states and R the 

input energy [3]. The Q and R matrices are chosen by the 
designer to obtain the desired system dynamic. 

and R = 10e6, one gets the 

following step radius response and open loop Bode plot: 

0 001 oe ilm DC. 10 lb 10 10’ II/ (0’ 

Figure 11: Step response and open loop Bode plot 

This system settles also in 10 ms. The phase and gain 
margins are respectively: 90 degrees and infinity 

(propriety of LQR). The closed loop system is the same as 

in Fig.5 except that K,, K, , K, are just gains. 

5. CLASSICAL APPROACH 

The phase and radial loop are two cascaded loops, the 
loop controllers being just classical filters. 

With K,(s)=132 1+ 

! 

1 

2.2 lo-3s 
+5.510-4s 

I 

(PID) and 

the following radius step 

response was obtained: 

Figure 12: Step response (1 phase, 2 radius) 

The system of Fig. 13 settles in 15 ms: 
Phase Loop 

I I 

Radial Loop 
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